THE STRUCTURE OF SUGAR OSAZONES

John Buckingham

Department of Chemistry, Westfield College, London, N.W.3. (Received in UK 26 January 1970; accepted for publication 5 February 1970)

Recently, Blair and Reberts¹ have published evidence in faveur of the cyclic structure (II) for the sugar esazenes, rather than the generally accepted acyclic structures $(1)^{2,3}$.

Their evidence is drawn frem infrared and ultravielet spectrescepy and frem various reactions of the osazones which are said to be inconsistent with the chelate bis-hydrazene structures (Ia) and (Ib). Their paper 1 contains several anomalies.

Firstly, the UV-visible spectra of the esazenes are inconsistent with structure (II), which contains an isolated phenylazo chromophore and an isolated (2-phenylhydrazino)-chromophore. In support of their assignment, the authors 1 quote ultraviolet data from Brode and his co-workers⁴ and from Cook, et. al⁵. which is claimed to support their contention that structure (II) should be associated with a strong absorption band ($\mathcal{E} = 20,000$) in the 390-410 nm region such as is shown by osazones. This is incorrect; these data^{4,5} refer only to diarylazo compounds such as 4-(dimethylamino)-azobenzene $(\lambda_{\max}$ 410 nm, ${\mathcal{E}}_{\text{max}}$ 28,300)⁴ which contain quite different chromophores from that required by formula (II). The absorption spectra of phenylazoalkanes

952 No.12

are well known^{6,7} to be characterised by a $\pi - \pi$ ^{*} transition (ϵ ^{\approx} 15,000) **below 300 nm** and a weak $n - \pi^*$ transition ($\mathcal{E} \ge 200$) in the 400 nm region. **This combination of bands is characteristic and quite unlike that of osazones. The phenylhydrazino chromophore is essentially transparent abova 300 nm.**

It might be argued that-hydrogen bonding in structure (II) might influence the spectrum of the azo group, but although hydrogen bonding may cause spectroscopic changes, these are usually small, as pointed out by Blair and Roberts¹. The nearest analogy to such a hydrogen bond is **that found in the phenylazo-hydroperoxides (III), which are hydrogen**bonded in non-polar solvents^{(b,6}. Their absorption spectra closely **resemble those of unsubstituted phenylazoalkanes** 6-9 **(2-hydroperoxy-2 phenylazopropane** ⁶ **, Xmax** 266.5 **and** 411 **nm,E** 9560 **and 134).**

It is also claimed by a roundabout analogy' that the spectrum of glucose (p-nitrophenyl)osazone (λ_{max} 448 nm, £ 31,300) is consistent with the chromophore $-N=N-C_6H_4-NO_2$ as required by formula (II). In fact **one compound, 3S-hydroperoxy-3S-(E-nitro-phenylazo) cholestane, is known containing this chromophore ?a and its spectrum is of the typical azoalkane type (** λ_{max} **284 and 425 nm; & 20,300 and 264) with some batho**chromic shift of the $n-\pi^*$ band attributable to the nitro group.

The authors¹ also fail to mention that the X-ray structure of **xylose (E-bromophenyl)-osazone shows it to be acyclic in the solid** state¹⁰. It has a typical osazone absorption spectrum $(\lambda_{max}$ 399 nm, E25,3oo). **The physical evidence in favour of structure (II) therefore rests only on infrared absorption data ¹ , which in the light of the**

difficulties experienced by other workers in making definite assignments **to -N=N- absorptionsll, must be considered equivocal in the absence of supporting evidence12.**

Structure (11) is by itself insufficient to explain the reactions of osazones such as tetra-0-acylation¹ and the formazan reaction (C=N-NH**group required9) and an equilibrium in solution with an "acyclic form" ¹ must be postulated. The structure of this form was not specified', but it can only be the phenylazo-hydrazone (IV) or the "normal" forms (I).**

Structure (IV) is also extremely improbable for the following reasons.

(1) Its UV-visible spectrum would again not correspond to that of an osazone.

(2) Its nmr spectrum would not agree with those published (two NH protons3a) unless a large amount of the cyclic form (II) were

assumed to be in equilibrium with a small amount of the acyclic form (IV). In this case it is not possible to explain the C₁-H resonance of osazones at $2-3\tau$ $3a,13$.

(3) Present knowledge 6.9 **of the essentially irreversible tautomerism of arylazoalkanes to arylhydrazones under the usual conditions predicts** the thermodynamic instability of structure (IV) relative to the "normal" **osazone structures (I). Tautomerigm of (I) into (IV) is even less favoured than that of a simple phenylhydrazone since conjugation of the** two C=N $\boldsymbol{\kappa}$ bonds must increase the stability of the hydrazone form, and **further stabilization associated with "quasi-aromaticity" of the osazone chelate structure is also a probability** 3c **.**

Furthermore, no mechanism of osaaone formation is conceivable which would lead directly to an azoalkane. The "normal" osazone (I) must be the first product, whatever the detailed mechanism ¹⁵ , **and to form either RZO structure (II) or (IV) it must undergo an arylhydrazone+ arylaso rearrangement with simultaneous deconjugation of the double -bonds.**

Alternatively, an equilibrium in solution between cyElic form (II) and a preponderance of his-hydrazone forms (Ia) and (Ib), although **it would explain the UV and nmr spectra, is similarly untenable, since using Blair and Roberts 1 explanation of the acetylation of the osazones it is impossible to devise a scheme which would explain the formation of both tetra- and penta-acetyl derivatives.**

It is thus clear: **1 structure (II) must be rejected on a variety of evidence.**

REFERENCES.

- 3. **(a) L. Mester, E. Moczar and J. parello, J. Amer. Chem.** Sac., 1965, <u>87</u>, 596. (b) H. El Khadem, M.L. Wolfrem and D. Horton,
<u>J. Org. Chem</u>., 1965, <u>30</u>, 838. (c) L. Mester, G. Vass, A. Stephe
and J. Parello, <u>Tetrahedron Letters</u>, 1968, 4053.
- 4. **W.R. Brode, J.H. Gould and G-1:. Wyman, J. Amer. Chem. Sot., 1952, 74, 4641;** 1953, 75, 1856; B1.N. Inscoe, **J.H. Gould and W.R. Brode, <u>ibid</u>., 1959, <u>81</u>, 5634.**
- 5. **A.H. Cook, D.G. Jones and J.B. Polya, J. Chem.** SoC. 1939, 1715.
- 6. **A.J. Bellamy and R.D. Guthrie, J. Chem. Sot. 1965, 2788.**
- 7. **J. Buckingham and** H.IJ. **Guthrie, (a) J. Chem. Sot. (C), 1968, 1445. (b) ibid., 1969, 1939.**
- 8. **R. Criegee and G. Lohous, Chem. Ber., 1951, 04, 219.**
- 9. J. Buckingham, Quart. Revs., 1969, 23, 37.
- 10. K. Bjåmer, S. Dahm, S. Furberg and C.S. Petersen, Acta. Chem. **stand.,** 1963, 17, 559.
- **11.** See **refs.** 15 **and 20-22 in ref. 1.**
- **12. l-phenylazo-2-(2-phenylhydrazino) _cyclohexane has been postulated (ref. 14) as an intermediate in the reduction of 1,2-bisphenyl**azocyclohexane and is thought capable of ring-chain tautomerism **to yield adipaldehyde bis-phenylhydrazone. Such a process occurring** to structure (II) would result in loss of C_1 .
- **13. H-C-N=N-Ph.** appears at about $6\text{\texttt{Y}}$ (Refs. 6 and 14).
- 14. A.J. Bellamy, R.D. Guthrie and G.J.F. Chittenden, J.Chem. Soc., 1966, 1989.
- 15. H. Simon and W. Moldenhauer, Chem. Ber., 1969, 102, 1191.